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Cholesterol biosynthesis is integral to proper neurodevelopment due to the reliance on de 

novo synthesis of cholesterol in the brain. Disruptions in this process have devastating outcomes 

for human life characterized by several phenotypic manifestations concomitant with developmental 

delay. The cholesterol biosynthesis disorder desmosterolosis is an extremely rare disorder with a 

severe clinical phenotype, however, the models used to study this disease are not well characterized. 

In addition to genetic disruptions in cholesterol biosynthesis, pharmacological perturbation is an 

understudied side effect of many commonly prescribed drugs. Here we present a characterization 

of the sterol profile of the mouse model of desmosterolosis followed by an examination of one such 

pharmacological inhibitor of cholesterol biosynthesis, amiodarone. Amiodarone is a commonly 

prescribed medication used to treat life-threatening atrial and ventricular arrhythmias with the 

primary target being potassium channels and beta adrenergic receptors. We show that amiodarone 

is also a potent inhibitor of several cholesterol biosynthesis enzymes in various cell culture models, 

affecting the enzymes 24-dehydrocholesterol reductase (Dhcr24) and emopamil binding protein 

(Ebp). Additionally we show that the serum of amiodarone users have elevated levels of 

desmosterol, zymosterol, zymostenol and 8-dehydrocholesterol. Our study provides evidence that 

the use of various medications, unrelated to cholesterol metabolism, may lead to potentially severe 

clinical consequences related to the inhibition of sterol biosynthetic enzymes.



www.manaraa.com

iii 

 

TABLE OF CONTENTS 

Acknowledgements ------------------------------------------------------------------------------------------------- i 

Table of Contents -------------------------------------------------------------------------------------------------- iii 

List of Figures ------------------------------------------------------------------------------------------------------- v 

list of tables --------------------------------------------------------------------------------------------------------- vi 

List of Abbreviations -------------------------------------------------------------------------------------------- vii 

Chapter 1:  Introduction ------------------------------------------------------------------------------------------- 1 

Cholesterol biosynthesis --------------------------------------------------------------------------------------- 1 

Cholesterol:  an essential biomolecule for neurodevelopment ----------------------------------------- 1 

Cholesterol biosynthesis disorders --------------------------------------------------------------------------- 3 

Desmosterolosis ------------------------------------------------------------------------------------------------- 5 

History of desmosterolosis mouse models ----------------------------------------------------------------- 6 

Pharmacological inhibition of Dhcr7 and Dhcr24 -------------------------------------------------------- 8 

Effects of amiodarone on cholesterol biosynthesis ----------------------------------------------------- 10 

Chapter 2:  Methods ---------------------------------------------------------------------------------------------- 12 

Mouse studies -------------------------------------------------------------------------------------------------- 12 

Study population ----------------------------------------------------------------------------------------------- 12 

Primary neuronal cultures ----------------------------------------------------------------------------------- 13 

Primary astrocytic cultures ---------------------------------------------------------------------------------- 13 

Control Neuro2a and Ebp-deficient Neuro2a cultures ------------------------------------------------- 14 

Immunocytochemistry and imaging ----------------------------------------------------------------------- 14 

RNA isolation and clean-up --------------------------------------------------------------------------------- 15 

Complementary DNA synthesis and RT2 Profiler PCR Mouse Arrays ----------------------------- 15 

Western blotting ----------------------------------------------------------------------------------------------- 15 

Cell counting --------------------------------------------------------------------------------------------------- 16 

Sterol extraction for HPLC-MS/MS analysis ------------------------------------------------------------ 16 

HPLC-MS/MS (SRM) analyses of sterols ---------------------------------------------------------------- 17 

Sterol extraction for GC-MS analysis of sterols --------------------------------------------------------- 18 

GC-MS analysis of sterols ----------------------------------------------------------------------------------- 18 

Serum drug extraction ---------------------------------------------------------------------------------------- 19 

Serum drug measurements ----------------------------------------------------------------------------------- 19 

Statistical analyses -------------------------------------------------------------------------------------------- 19 

Chapter 3:  Results ----------------------------------------------------------------------------------------------- 21 

Cholesterol, desmosterol and 7-DHC levels show a developmental trajectory ------------------- 21 



www.manaraa.com

iv 

 

Cholesterol deficiency leads to early postnatal death -------------------------------------------------- 22 

Desmosterol is greatly elevated in the brains of Dhcr24-deficient mice --------------------------- 23 

Desmosterol is elevated in Dhcr24-Het mice compared to WT littermates------------------------ 23 

Elevated desmosterol levels result in complex transcriptional changes ---------------------------- 25 

High desmosterol levels alter neuronal outgrowth ------------------------------------------------------ 27 

Amiodarone affects post-lanosterol cholesterol biosynthesis in neuronal and glial cells ------- 29 

Amiodarone inhibits the sterol biosynthetic enzyme EBP -------------------------------------------- 30 

Amiodarone users have elevated serum levels of desmosterol, 8-DHC, zymosterol and 

zymostenol ------------------------------------------------------------------------------------------------------ 33 

Chapter 4:  Discussion ------------------------------------------------------------------------------------------- 36 

Role of desmosterol in neuronal development ----------------------------------------------------------- 36 

Amiodarone affects cholesterol biosynthesis ------------------------------------------------------------ 39 

Conclusions ----------------------------------------------------------------------------------------------------- 43 

Appendix A:  Sterol information ------------------------------------------------------------------------------ 46 

Appendix B:  Sterol biosynthesis disorders ----------------------------------------------------------------- 46 

Appendix C:  Network statistics of altered transcripts from PCR arrays ------------------------------ 47 

Appendix D:  Zymosterol and zymostenol GC-MS chromatograms and mass spectra ------------- 48 

Appendix E:  Reagent table ------------------------------------------------------------------------------------- 49 

Bibliography ------------------------------------------------------------------------------------------------------- 50 

 

 
  



www.manaraa.com

v 

 

LIST OF FIGURES 

Figure 1: Cholesterol biosynthesis scheme. ------------------------------------------------------------------ 2 

Figure 2: Chemical structure of amiodarone (CAS 1951-25-3) and triparanol (metasqualene; 

CAS 78-41-1). ----------------------------------------------------------------------------------------------------- 10 

 Figure 3: Ontogeny of cholesterol, desmosterol and 7-DHC in the mouse brain from E9 to P240.

 ----------------------------------------------------------------------------------------------------------------------- 21 

Figure 4: Knockout of Dhcr24 affects viability and birth weight of mice. --------------------------- 22 

Figure 5: Desmosterol is greatly elevated in the brains of Dhcr24-deficient mice. ---------------- 23 

Figure 6: Cholesterol and desmosterol levels are not affected by maternal genotype. ------------- 24 

Figure 7: Desmosterol levels are greatly elevated in nervous tissue of Dhcr24-Het mice. ------- 25 

Figure 8: Interaction network of altered transcripts from PCR arrays. -------------------------------- 28 

Figure 9: MAP2 expression is elevated in Dhcr24-KO brain. ------------------------------------------ 29 

Figure 10: Amiodarone elevates zymosterol and zymostenol in cells. -------------------------------- 31 

Figure 11: Comparison of genetic and chemical inhibition of EBP. ---------------------------------- 32 

Figure 12: Amiodarone and MDEA are present in patient serum. ------------------------------------- 34 

Figure 13: Sterol measurements in human serum samples. --------------------------------------------- 35 

Figure 14: Sterol measurements in human serum samples that received oral administration of 

amiodarone. -------------------------------------------------------------------------------------------------------- 41 

Figure 15: Network statistics of altered transcripts from PCR arrays. -------------------------------- 47 

Figure 16: GC-MS analysis of zymosterol. ----------------------------------------------------------------- 48 

Figure 17: GC-MS analysis of zymostenol. ---------------------------------------------------------------- 48 

 

  

file://///10.8.51.248/main/MirnicsKorade/Luke/MS%20Thesis/LukeAllen_Thesis_v6.0.docx%23_Toc26520700
file://///10.8.51.248/main/MirnicsKorade/Luke/MS%20Thesis/LukeAllen_Thesis_v6.0.docx%23_Toc26520701
file://///10.8.51.248/main/MirnicsKorade/Luke/MS%20Thesis/LukeAllen_Thesis_v6.0.docx%23_Toc26520701
file://///10.8.51.248/main/MirnicsKorade/Luke/MS%20Thesis/LukeAllen_Thesis_v6.0.docx%23_Toc26520702
file://///10.8.51.248/main/MirnicsKorade/Luke/MS%20Thesis/LukeAllen_Thesis_v6.0.docx%23_Toc26520702
file://///10.8.51.248/main/MirnicsKorade/Luke/MS%20Thesis/LukeAllen_Thesis_v6.0.docx%23_Toc26520703
file://///10.8.51.248/main/MirnicsKorade/Luke/MS%20Thesis/LukeAllen_Thesis_v6.0.docx%23_Toc26520704
file://///10.8.51.248/main/MirnicsKorade/Luke/MS%20Thesis/LukeAllen_Thesis_v6.0.docx%23_Toc26520705
file://///10.8.51.248/main/MirnicsKorade/Luke/MS%20Thesis/LukeAllen_Thesis_v6.0.docx%23_Toc26520706
file://///10.8.51.248/main/MirnicsKorade/Luke/MS%20Thesis/LukeAllen_Thesis_v6.0.docx%23_Toc26520707
file://///10.8.51.248/main/MirnicsKorade/Luke/MS%20Thesis/LukeAllen_Thesis_v6.0.docx%23_Toc26520708
file://///10.8.51.248/main/MirnicsKorade/Luke/MS%20Thesis/LukeAllen_Thesis_v6.0.docx%23_Toc26520709
file://///10.8.51.248/main/MirnicsKorade/Luke/MS%20Thesis/LukeAllen_Thesis_v6.0.docx%23_Toc26520710
file://///10.8.51.248/main/MirnicsKorade/Luke/MS%20Thesis/LukeAllen_Thesis_v6.0.docx%23_Toc26520711
file://///10.8.51.248/main/MirnicsKorade/Luke/MS%20Thesis/LukeAllen_Thesis_v6.0.docx%23_Toc26520712
file://///10.8.51.248/main/MirnicsKorade/Luke/MS%20Thesis/LukeAllen_Thesis_v6.0.docx%23_Toc26520713
file://///10.8.51.248/main/MirnicsKorade/Luke/MS%20Thesis/LukeAllen_Thesis_v6.0.docx%23_Toc26520713
file://///10.8.51.248/main/MirnicsKorade/Luke/MS%20Thesis/LukeAllen_Thesis_v6.0.docx%23_Toc26520714


www.manaraa.com

vi 

 

LIST OF TABLES 

Table 1: Elevated desmosterol changes lipoprotein signaling, cholesterol biosynthesis transcripts, 

synaptic plasticity transcripts, nuclear receptors and coregulators. ------------------------------------- 27 

Table 2: Common names of sterols used with detailed information.  --------------------------------- 46 

Table 3: Comparison of cholesterol synthesis disorders. ------------------------------------------------ 46 

 

  

file://///10.8.51.248/main/MirnicsKorade/Luke/MS%20Thesis/Drafts/LukeAllen_Thesis_v3.1%20WITH%20REFS%20AND%20FIGURES.docx%23_Toc23753204
file://///10.8.51.248/main/MirnicsKorade/Luke/MS%20Thesis/Drafts/LukeAllen_Thesis_v3.1%20WITH%20REFS%20AND%20FIGURES.docx%23_Toc23753204


www.manaraa.com

vii 

 

LIST OF ABBREVIATIONS 

7-DHC   7-Dehydrocholesterol 

7-DHD   7-Dehydrodesmosterol 

8-DHC   8-Dehydrocholesterol 

ANOVA  Analysis of variance 

APCI   Atmospheric pressure chemical ionization 

ASD   Autism spectrum disorder 

BCA   Bicinchoninic acid  

BEH   Ethylene bridged hybrid 

BHT   Butylated hydroxytoluene 

Bis-Tris  Bis(2-hydroxyethyl)amino-tris(hydroxymethyl)methane 

BSTFA   N,O-Bis(trimethylsilyl)trifluoroacetamide 

cDNA   Complementary deoxyribonucleic acid 

CDPX2   Chondrodysplasia punctate 2 X-linked 

Chol   Cholesterol 

CNS   Central nervous system 

CoA   Coenzyme A 

Dhcr24   24-Dehydrocholesterol reductase 

Dhcr7   7-Dehydrocholesterol reductase 

DMSO   Dimethyl sulfoxide 

DNase   Deoxyribonuclease 



www.manaraa.com

viii 

 

E15   Embryonic day 15 

EDTA   Ethylenediaminetetraacetic acid 

EIC   Extracted ion chromatogram 

FBS   Fetal bovine serum 

GAPDH  Glyceraldehyde 3-phosphate dehydrogenase  

GC-MS   Gas chromatography mass spectrometry 

HBSS   Hanks’ balanced salt solution 

Het   Heterozygous 

HMGCR  3-hydroxy-3-methylglutaryl-coenzyme A reductase 

HPLC-MS/MS  High-performance liquid chromatography-tandem mass spectrometry 

KO   Knock-out 

MAP2   Microtubule associated protein 2 

MDEA   Mono-N-desethylamiodarone 

min   Minutes 

NPC   Niemann-Pick type C disease 

P0   Postnatal day 0 

PCR   Polymerase chain reaction 

PTAD   4-Phenyl-1,2,4-triazoline-3,5-dione 

PVDF   Polyvinylidene difluoride 

qPCR   Quantitative polymerase chain reaction 

RCF   Relative centrifugal force 



www.manaraa.com

ix 

 

RIPA   Radioimmunoprecipitation assay 

RNA   Ribonucleic acid 

RT   Room temperature 

SDS   Sodium dodecyl sulfate 

SEM   Standard error of the mean 

SLOS   Smith-Lemli-Opitz syndrome 

SRM   Selected reaction monitoring 

TBS   Tris-buffered saline 

TIFF   Tagged image file format 

TPP   Triphenylphosphine 

Tris   Tris(hydroxymethyl)aminomethane 

UNMC   University of Nebraska Medical Center 

UPLC   Ultra-performance liquid chromatography 

v/v   Percent by volume 

WT   Wild type 

 

 

 

 

 



www.manaraa.com

1 

 

CHAPTER 1:  INTRODUCTION 

Cholesterol biosynthesis  

About 20-25% of cholesterol biosynthesis occurs in the liver, with additional synthesis 

taking place in the brain, intestines, adrenal glands, and reproductive organs [1-4]. Cholesterol is 

synthesized from acetyl-CoA through many, enzymatically processed intermediates (Figure 1) [5]. 

Cholesterol biosynthesis can be broken down into two major segments: pre-squalene and post-

squalene cholesterol synthesis. Post-squalene synthesis converts lanosterol to cholesterol through 

two major synthetic pathways: the Kandutsch-Russell pathway (favored in most tissues) and the 

Bloch pathway. The Kandutsch-Russell pathway proceeds through a complex series of reactions 

(lanosterol through zymostenol and lathosterol ending in 7-dehydrocholesterol (7-DHC)), 

meanwhile the parallel Bloch pathway proceeds from lanosterol through zymosterol to desmosterol 

[6]. The conversion of 7-DHC to cholesterol by DHCR7 and the conversion of desmosterol to 

cholesterol by DHCR24 are the last steps in cholesterol biosynthesis [7, 8]. 

Cholesterol:  an essential biomolecule for neurodevelopment 

While the brain accounts for only 2% of total body weight in humans, it contains about 

25% of all lipids. Cholesterol accounts for 20-30% of all lipids in the brain [6, 9, 10]. Cholesterol 

metabolism in the brain differs markedly from that of other tissues due to the blood brain barrier 

preventing cholesterol uptake from the circulation, thus the brain relies fully on de novo cholesterol 

synthesis [11]. Importantly, cholesterol is synthesized by neurons: HMGCR and DHCR7, the first 

and last enzymes in the cholesterol biosynthesis pathway, are strongly co-expressed at high levels 

in neurons throughout the adult murine brain [12]. The function of cholesterol in the central nervous 

system (CNS) goes beyond being a structural component of cellular membranes and lipid rafts: it 

is required for synapse and dendrite formation, axonal guidance, and serves as a precursor for 

various biosynthetic pathways [13]. Furthermore, it plays a critical role in the activity of the sonic 

hedgehog pathway, an important signaling cascade that regulates morphogenesis in the brain [14]. 
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While endogenous cholesterol synthesis is essential for proper brain development, intact 
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cholesterol metabolism is also critical for normal function of the adult brain: in the elderly, high 

circulating cholesterol is associated with better memory function and conversely, low serum 

cholesterol is associated with an increased risk for depression [15, 16]. Dysfunction of the 

cholesterol biosynthesis pathways and/or metabolism leads and contributes to a number of 

neurodevelopmental and neurodegenerative disorders such as Smith-Lemli-Opitz Syndrome 

(SLOS) [17, 18], desmosterolosis [19-26], Niemann-Pick type C (NPC) disease [27], Huntington’s 

disease [28-32], and Alzheimer’s disease [28, 32]. 

Cholesterol biosynthesis disorders 

Defects in cholesterol biosynthesis present with severe abnormalities and developmental 

disability [21, 22, 33-37]. In the post-lanosterol portion of the pathway there are several disorders 

described, with the most prevalent being SLOS. Other disorders described in the literature include 

lathosterolosis, X-linked dominant chondrodysplasia punctata 2 (CDPX2) and desmosterolosis. 

With the exception of CDPX2, all sterol biosynthesis disorders discussed hereinafter follow an 

autosomal recessive inheritance pattern. First we will discuss SLOS, the most common post-

lanosterol cholesterol biosynthesis disorder, followed by lathosterolosis, which presents with a very 

similar clinical phenotype to SLOS, followed by CDPX2 and finally desmosterolosis, on which a 

majority of the following work focuses on.  

SLOS is caused by mutations in both copies in the gene encoding the last enzyme in the 

cholesterol biosynthesis pathway – 7-dehydrocholesterol reductase (DHCR7) [38]. These can be 

either identical (homozygous) or different on each allele (compound mutations) [39-41], one 

inherited from each parent. It has a prevalence of ~1: 20,000 births, with males and females equally 

affected [10, 42]. It is believed that heterozygous DHCR7 mutation carriers have >1% frequency 

in the human population (9, 27, 32). To date, more than 165 DHCR7 missense mutations have been 

identified, and when the two loss or reduced function mutant alleles combine, they result in SLOS 

with varying degrees of clinical severity, depending on how much DHCR7 function is retained [41, 

43]. Mutations that completely abolish cholesterol biosynthesis are incompatible with life, 
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therefore only mutations that spare at least some cholesterol biosynthesis are observed. Mutations 

in DHCR7 result in diminished cholesterol and desmosterol biosynthesis and accumulation of the 

precursor 7-DHC in various tissues [17]. SLOS is characterized by multiple congenital 

malformations and defects, photosensitivity, impaired cognitive function, and behaviors of autism 

spectrum disorder (ASD) [44, 45]. 

Lathosterolosis was first described in 2002 in an infant presenting with severe congenital 

microcephaly, hexadactyly of the left foot, syndactyly of multiple toes and liver dysfunction 

detected in the first year of life. During the first two years, severe psychomotor delays became 

apparent, with the deficits closely resembling the SLOS phenotype. However, biochemical analysis 

revealed a lack of 7-DHC accumulation which is the biochemical hallmark of SLOS. Instead, this 

patient had greatly elevated levels of lathosterol and upon further investigation it was revealed that 

fibroblasts from this patient had impaired SC5D activity. To date, there have been only 5 cases of 

lathosterolosis reported in humans, with the most recent case being very mild and diagnosed much 

later in life than the four previous cases [46]. Due to the phenotypic overlap of SLOS and 

lathosterolosis the first four reported cases of lathosterolosis required exclusion of SLOS by way 

of sterol profiling to arrive at the diagnosis of lathosterolosis.  

CDPX2 arises from mutations in the emopamil binding protein (EBP) gene which encodes 

for the cholesterol biosynthetic enzyme sterol-delta(8)-isomerase. CDPX2 patients present with 

skin defects as well as skeletal abnormalities including short stature and craniofacial defects [47]. 

Biochemically, patients present with elevated levels of 8-dehydrocholesterol (8-DHC) and 

zymostenol [48]. The ‘Tattered’ mouse model contains a semi-dominant mutation in the Ebp gene 

that is prenatally lethal for males while females survive but are smaller in stature and have coat 

striping similar to the skin phenotype of heterozygous human females with CDPX2. The striping 

of the mouse coat and the analogous skin defects in humans such as whorled atrophic and 

pigmentary lesions, striated hyperkeratosis, coarse lusterless hair and alopecia as well as the 
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craniofacial defects present in both Tattered mice and humans have been linked to alterations in 

the function of EBP. Due to the X-linked nature of the disease, very few cases have been reported 

in males as CDPX2 is typically lethal in males which is recapitulated in the Tattered mice [49]. 

One report of a male with CDPX2 attributed survival to his 47,XXY karyotype, while other reports 

of males with CDPX2 attribute survival to hypomoprhic mutations or single gene mosaicism [50-

52]. The characteristic features of epiphyseal and periepiphyseal stippling, asymmetries, patchy 

alopecia of the scalp, brow, and lashes, linear arrays of hypotrophic changes of the skin, structural 

vertebral anomalies and scoliosis, characteristic facial features, polydactyly and small stature have 

been observed in both female and male patients with CDPX2, though not all features are present in 

every patient. 

Desmosterolosis 

Desmosterolosis is a rare autosomal recessive disorder caused by mutations in the Dhcr24 

gene that encodes the enzyme 24-dehydrocholesterol reductase. Homozygous or heterozygous 

Dhcr24 mutations result in systemic elevation of desmosterol and decreased levels of total 

cholesterol [20, 22, 26]. The Dhcr24 gene is mapped to chromosome 1p33-p31.1 and eight 

missense mutations have been described in the coding region of 1550 bp (NM_014762.3) to date. 

Observed clinical findings of desmosterolosis include shortening and flexion of extremities, brain 

malformations such as hydrocephalus, absent septum pellucidum and thin corpus callosum, 

dysmorphic facial features, syndactyly, developmental delay and diaphragmatic eventration [20-

22, 24-26].  

Desmosterolosis and SLOS have overlapping clinical findings and mouse models of both 

disorders lead to early postnatal death [19]. It seems that the accumulation of desmosterol is more 

detrimental than the accumulation of 7-DHC, as DHCR24 mutations in humans are most often 

incompatible with life – there are only 10 reported cases of desmosterolosis in the literature since 

the first report in 1998 [23]. The number of reported cases of desmosterolosis is likely to increase 

as diagnostic tools available to clinicians advance and genetic sequencing of newborns becomes 
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more common. Given our experience in characterizing the SLOS mouse model, we decided to 

undertake the characterization of the mouse model of desmosterolosis as well. The analysis of the 

desmosterolosis model and comparison to the SLOS model help to illustrate the importance of 

desmosterol and 7-DHC in neuronal development in addition to the consequences lack of 

cholesterol has on this process.  

History of desmosterolosis mouse models 

The original Dhcr24 knockout mice (C57BL/6x129SvEv) were described by the laboratory 

of Dr. Elena Feinstein (mice were generated through service agreement with Lexicon Genetics 

Incorporated). The targeting vector had a 249 bp deletion in Dhcr24 exon 1 and was electroporated 

into 129/SvEvBrd (Lex-1) ES cells. The ES cell clones were microinjected into C57BL/6 albino 

blastocysts and the resulting chimeras were mated to C57BL/6 (albino) females to generate mice 

heterozygous for the Dhcr24 mutation. There are three articles published by the senior team of Drs. 

E. Feinstein and I. Bjorkhem. The first report is in Science 2003 [53], the second in JBC 2006 [54] 

and the third in Arterioscler Thromb Vasc Biol 2007 [55]. The Science 2003 is a one-page report, 

with one figure and two supplemental figures showing that Dhcr24-KO mice are viable and survive 

[53]. The JBC 2006 manuscript used these same mice and analyzed CYP46A1 transcriptional 

regulation [54]. In Figure 2A of the 2006 JBC manuscript there is a graph showing brain cholesterol 

and desmosterol concentration in WT and Dhcr24-KO mice but these data were recalculated from 

the Science 2003 article. The ATVB 2007 manuscript [55] studies the same mouse model by the 

same investigators, comparing Dhcr24-KO mice with Dhcr24-Het mice however, there is no data 

presented for WT mice. The focus of study was the hepatic sterol homeostasis which included the 

analysis of hepatic mRNA levels for sterol related genes, bile acids quantification and 

measurements of plasma oxysterols [55].  

In the meantime, the original Dhcr24 knockout mice were made available to other 

investigators who initiated backcrossing of Dhcr24-KO mice to C57BL/6J background. In addition 

to the initial three reports [53-55], there were four more publications from the Seo group [56-59] 
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and one publication by Kuehnle et al. [60] using Dhcr24-KO mice. The Seo group (Nagoya 

University, Japan) obtained mice from Quark Biotech Inc. (Fremont, CA) and backcrossed with 

C57BL/6J for more than five generations and described the phenotype [58] that is identical to 

phenotype described in the current study. Three publications by this group focused on skin changes 

in Dhcr24-KO mice [57-59] and one was focused on mouse embryonic fibroblasts isolated from 

Dhcr24-KO mice [56]. Kuehnle et al. obtained mice from Quark [60] performing experiments in 

SH-SY5Y cells and in primary neuronal cultures from WT and Dhcr24-KO brains, but provided 

no details on the mouse phenotype. This group cultured primary neurons in presence of serum and 

cholesterol. Based on our experience with primary neuronal cultures (and various cellular models 

of SLOS), the phenotype (elevated desmosterol) does not manifest in the presence of serum and 

cholesterol. Thus, we grow cortical neurons in serum-free defined medium without cholesterol 

supplementation as described in Chapter 2:  Primary neuronal cultures.  

Information available from the Jackson Laboratory website 

(https://www.jax.org/strain/012564; under the tab Details>Development) states the following: 

“This same mouse model developed by Dr. Feinstein’s group was sent to Dr. Shailenra B. Patel 

(while at Medical University of South Carolina) where they were backcrossed to C57BL/6J mice 

for three generations. Dr. Patel moved his colony to Medical College of Wisconsin, and then further 

backcrossed the colony to C57BL/6J mice for 11 more generations. Heterozygous mice 

backcrossed to C57BL/6J for total of at least 14 generations were sent to The Jackson Laboratory 

Repository. Upon arrival, mice were bred to C57BL/6J (Stock No. 000664) for at least one 

generation to establish the colony.” We purchased these mice from the Jackson Laboratory. 

Compared to the original Science 2003 [53] report that Dhcr24-KO mice are viable, these 

same mice on C57BL/6J background are neonatal lethal. The Dhcr24-KO phenotype (reduced 

number of Dhcr24-KO pups at birth; if born, lethal shortly after birth; wrinkle-free skin) has been 

https://www.jax.org/strain/000664
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reproduced by the investigators in Japan and now by us. While Seo’s group focused on the role of 

Dhcr24 in the skin, we present data relevant to central nervous system development.  

Pharmacological inhibition of Dhcr7 and Dhcr24  

While essential for life as an integral part of membranes and indispensable for the nervous 

system, cholesterol has a bad reputation as the culprit in hypertension and cardiovascular diseases 

[61]. Therefore over the last seven decades pharmaceutical companies have worked to develop 

compounds to inhibit cholesterol synthesis. Initial efforts focused on the inhibition of the last two 

enzymes in the pathway, Dhcr7 and Dhcr24. In 1960 the drug triparanol (BIBX79, NB-598, MER-

29) was introduced in the US as the first synthetic cholesterol-lowering drug. However, due to 

severe adverse effects the drug was withdrawn in 1962 [62]. Triparanol decreased cholesterol levels 

by inhibiting Dhcr24 while simultaneously elevating desmosterol levels.  

Another sterol synthesis inhibitor, AY9944, was found to be teratogenic [63] before 

entering into clinical trials. This compound is an inhibitor of Dhcr7 and is currently used to induce 

a pharmacological model of Smith-Lemli-Opitz syndrome in rats [64]. Pregnant rats are injected 

with AY9944 and the injections continue in newborn pups until they reach 3 months of age. 

AY9944 is very toxic, so much so that very low concentrations of the drug have to be injected to 

prevent lethal phenotype. The AY9944-treated rats have biochemical profiles characteristic for 

SLOS and develop retinal degeneration [65]. 

Another example of chemical inhibition of Dhcr7 with negative consequences is the use of 

the frequently prescribed antipsychotic, aripiprazole. Cell culture studies have shown that 

aripiprazole inhibits the Dhcr7 enzyme [66-68]. Analysis of samples from patients taking 

aripiprazole showed that 7-DHC is significantly elevated in their blood [69]. Studies in our 

laboratory have shown that, when given to pregnant mice, aripiprazole increases 7-DHC in progeny 

in both tissue and serum. This biochemical change, greatly elevated 7-DHC, is a characteristic 

finding present in tissues and serum of the mouse model of SLOS [70]. Aripiprazole is not currently 
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contraindicated for use during pregnancy but rather the American College of Obstetricians and 

Gynecologists recommends individualized therapy during pregnancy [71]. A review of literature 

on the use of pharmaceutical inhibitors showed that the inhibitors of Dhcr7 are teratogenic [43]. 

These examples illustrate the unintended consequences and side effects of various medications 

currently in use. While beneficial to patients with psychiatric disorders, a special caution should be 

taken when aripiprazole is prescribed to pregnant women.  

In an effort to identify other pharmaceutical and experimental drugs that have off-target 

effects on cholesterol biosynthesis, our laboratory performed a series high-throughput screenings 

over the last several years. In total, we have profiled the effects of about 3,000 compounds on 

cholesterol biosynthesis in various cell culture models [66-68]. These studies concluded that 5 to 

10% of all compounds interfere with one of the enzymatic steps in post-lanosterol biosynthesis 

pathway. Considering that there are eight known genetic diseases caused by the mutations in sterol 

enzymes [72], it is alarming evidence that the use of various medications not intended to affect 

cholesterol metabolism, may lead to potentially severe clinical consequences related to the 

inhibition of sterol biosynthetic enzymes.  

Amiodarone is commonly used to treat a variety of cardiovascular conditions and it was 

recognized that it might affect total cholesterol levels [73, 74]. However, only very recently it was 

reported that the users of amiodarone have greatly elevated desmosterol levels in their serum [75]. 

Interestingly, amiodarone’s structure is strikingly similar to that of triparanol, with both containing 

a triethylamine moiety with an ether linkage to the rest of the compound (Figure 2). Of potential 

concern is one clinical case report about a child with developmental disabilities. After thorough 

exclusion of genetic causes, the only plausible identified cause was the use of amiodarone by 

mother during the pregnancy [76]. Thus, we designed the experiments to test the effects of 

amiodarone on cholesterol biosynthesis in a neuronal cell line, Neuro2a and in primary cultures of 

mouse neurons and astrocytes. 
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Effects of amiodarone on 

cholesterol biosynthesis 

Amiodarone is a 

commonly prescribed anti-

arrhythmic drug predominantly 

used in the treatment of 

ventricular arrhythmias [77]. 

Additionally it is also used to treat 

other cardiovascular conditions 

including atrial fibrillation, atrial 

flutter, refractory atrioventricular 

nodal and atrioventricular re-

entrant tachycardia. The primary 

action of amiodarone is blocking 

potassium rectifier currents in the 

heart [78]. Other actions of 

amiodarone include effects on beta-adrenergic receptors, calcium and sodium channels. 

Amiodarone was the 198th most prescribed medication in the US in 2016 with 2.9 million 

prescriptions [79] and is on the World Health Organization list of essential medicines [80].  

The starting dose for amiodarone is 800-1600 mg per day taken orally in a single dose for 

1-3 weeks. The dosage is then decreased to 100-200 mg per day in a single dose for maintenance 

[81]. It is important to consider that the drug has a very long elimination half-life at 58 days on 

average [82], while its active metabolite mono-N-desethylamiodarone (MDEA) has a 36 day half-

life, though it may not reach steady state levels for up to a year [83]. Both amiodarone and MDEA 

accumulate in adipose tissue as well as the liver and lungs. Due to the long half-life and this 

accumulation in multiple tissues, the adverse effects of amiodarone may take several months to 

 

Figure 2: Chemical structure of amiodarone (CAS 1951-25-3) 

and triparanol (metasqualene; CAS 78-41-1). 
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relent upon cessation of the drug. In fact, the major risk factor for clinically significant toxic side 

effects identified by a retrospective study of amiodarone users’ medical records was duration of 

treatment, with 1.6-2.8% of users being affected [84].  

The most commonly listed side effect of amiodarone use is corneal microdeposits which 

occur in most users, followed by cardiac, pulmonary and liver toxicity as well as hypo- and hyper-

thyroidism. Dermatologic effects such as blue skin discoloration and photosensitivity have also 

been reported [77]. Neurologic toxicity symptoms range from cognitive impairment to peripheral 

neuropathy, ataxia and in rare cases, quadriplegia. We were interested to determine if the 

neurological toxicity might be related to the ability of amiodarone to alter cholesterol synthesis. 

Recent studies showed that the most affected pathway in rats treated with amiodarone was 

cholesterol biosynthesis [73, 74, 85]. This is an interesting observation considering the importance 

of cholesterol for maintaining membrane fluidity and composition. Both of these aspects may then 

affect the functioning of potassium channels and other membrane proteins [86]. Amiodarone is 

capable of crossing the blood brain barrier and due to the brain’s reliance on de novo cholesterol 

biosynthesis, perturbation of this process by prescription drugs is necessary to consider when 

attempting to understand the etiology of off-target effects. Since the mechanism by which 

amiodarone alters cholesterol biosynthesis is unknown, further analysis of amiodarone’s effects on 

cholesterol synthesis may help to elucidate this mechanism. Here we show the effects of 

amiodarone on neuronal and glial sterol synthesis and examine the sterol composition in serum of 

amiodarone users. 
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CHAPTER 2:  METHODS 

Mouse studies 

Adult mice, B6.129S5-Dhcr24tm1lex/SbpaJ, stock no: 012564 and B6.129P2(Cg)-Dhcr7tm1Gst/J, 

stock no: 007453 were purchased from the Jackson Laboratory. The mice were housed under a 12-

hr light-dark cycle at constant temperature (25 °C) and humidity with ad libitum access to food and 

water in Comparative Medicine at UNMC, Omaha, NE. Embryonic and newborn mice from Het 

(Dhcr24+/-) x Het (Dhcr24+/-) and Het (Dhcr7+/-) x Het (Dhcr7+/-) matings were used for the study. 

The whole brain was dissected then bisected along the longitudinal fissure prior to freezing in 2-

methyl butane pre-chilled on dry ice and stored at -80°C. Tail clips were collected for genotype 

confirmation. Half of the brain was used for sterol analysis and the other half was used for either 

total RNA extraction and qPCR or protein extraction and western blotting. All procedures were 

performed in accordance with the Guide for the Humane Use and Care of Laboratory Animals. The 

use of mice in this study was approved by the Institutional Animal Care and Use Committee of 

UNMC. 

Study population 

Serum samples were obtained from the Nebraska Biobank, a repository comprised of 

residual samples from patients who consent to donate any blood, serum or plasma left-over after 

laboratory testing. The Nebraska Biobank serves UNMC faculty as part of the Center for Clinical 

and Translational Research. The Biobank contains de-identified serum, plasma, and genomic DNA 

from consented patients’ residual clinical laboratory samples. De-identified data is available for all 

samples and includes demographics, encounters, diagnoses, problem list, medications, procedures 

(including labs), and OB/GYN data. The Nebraska Biobank functions as a fee for service core 

facility at UNMC and is available to all NU System faculty at a subsidized rate. Electronic Health 

Record personnel identified a group of samples from users of amiodarone and an age and sex 

matched control group. The use of Biobank de-identified samples is not subject to regulations and 

as such does not require review and approval by the IRB.  
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Primary neuronal cultures 

Primary cortical neuronal cultures were prepared from WT E15 mice. Pregnant females 

were anesthetized by isoflurane and sacrificed by decapitation. Embryos were dissected out and 

sacrificed by decapitation immediately after removal from the uterus. The brain was placed in pre-

chilled HBSS solution (w/o Ca2+, w/o Mg2+) and cerebral cortices were dissected, meninges 

removed and cut into small chunks of similar sizes and transferred to Trypsin/EDTA (0.5%) (VWR 

International) for 25 min at 37°C. Following the incubation, trypsin solution was replaced with 

trypsin inhibitor (Sigma) solution and the tissue was centrifuged for 5 minutes. Tissue pieces were 

resuspended in Neurobasal medium with B-27 (Thermo Fisher Scientific) supplement and 

triturated with a fire-polished Pasteur pipette. The cells were pelleted by centrifugation for 5 min 

at 80 X g. The cell pellet was resuspended in Neurobasal medium with B-27 supplement and the 

cells were counted. The cells were plated on a poly-D-lysine coated 96-well plate at density 50,000 

cells/well. The growth medium was Neurobasal medium plus B-27 supplement plus Glutamax 

(Thermo Fisher Scientific) plus 3 μM cytosine arabinoside. Incubation was in the cell culture 

incubator (37°C, 5% CO2) for 3 – 6 days. At the end of incubation, the cultures were processed for 

immunocytochemistry. 

Primary astrocytic cultures  

After plating the required number of cells for neuronal cultures, left-over cells were plated 

in 100 mm dishes at density of 10x106 per tissue culture plate in DMEM with 10% FBS. Under 

these conditions, astrocytes adhere and divide and completely populate the plate within 10-14 days. 

Once the plates were full, they were rinsed using the cold jet method [87], briefly 4°C media was 

pipetted over the cells to detach non-astrocytic cells, leaving only adherent astrocytes. The 

astrocytes were trypsinized and plated in 96-well plates in DMEM plus 10% FBS at 30,000 

cells/well. The following day the medium was completely changed and astrocytes were grown in 

Neurobasal medium with B-27 supplement in the absence of cholesterol (same medium as neuronal 
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cells without cytosine arabinoside). Cells were incubated at 37°C, 5% CO2 for 6 days. At the 

endpoint of incubation, cells were counted as described in a later section. 

Control Neuro2a and Ebp-deficient Neuro2a cultures  

The neuroblastoma cell line, Neuro2a, was purchased from ATCC (Rockville, MD). EPB-

deficient Neuro2a cells were generated by Ebp shRNA (Open Biosystems) transfection. A stable 

cell line expressing Ebp shRNA was established using puromycin selection. The controls for Ebp-

deficient Neuro2a cells were Neuro2a cells transfected with non-silencing shRNA and Neuro2a 

transfected with an empty plasmid. The cell lines were maintained in EMEM supplemented with 

L-glutamine, 10% FBS, and penicillin/streptomycin at 37°C and 5% CO2 (plus puromycin for Ebp-

deficient Neuro2a cells, non-silencing Neuro2a and empty plasmid Neuro2a). Cells were 

subcultured once a week and the culture medium changed every 2 days. For experimental purposes, 

the cells were plated in either 100 mm plates (protein extraction and RNA isolation), or 96-well 

plates (for sterol analysis and immunocytochemistry). To assess the endogenous sterol synthesis, 

these cultures were grown in defined medium without cholesterol and without lipids by using 

EMEM with N2 supplement, L-glutamine, and penicillin/streptomycin (plus/minus puromycin). At 

specific times, the cells were harvested from 100mm plates by removing medium, washing once 

with  5 mL 1X PBS, and then scraping cells with a spatula in 5mL 1X PBS. Cells were centrifuged 

for 8 min at 700 rpm at 4˚C and PBS was removed before RNA isolation or protein extraction. 

Immunocytochemistry and imaging 

Neurite outgrowth of E15 neuronal cultures was evaluated on an ImageXpress Pico 

Automated Cell Imaging System using a 20X Fluotar objective in the Cy3 channel. Images were 

acquired and analyzed with CellReporterXpress software (Molecular Devices). For each well 49 

individual fields were captured and stitched together. The neurite growth was analyzed by the 

neurite tracing algorithm in CellReporterXpress. 
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RNA isolation and clean-up 

Brains were dissected from P0 pups and homogenized in 1 mL of ice cold TRIzol Reagent 

(Thermo Fisher Scientific). RNA was isolated following the protocol included with the TRIzol 

Reagent. RNA pellets were redissolved in nuclease-free water. RNA concentration and quality 

were measured using a NanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific). 100 µg of 

isolated RNA was then cleaned using Qiagen’s RNeasy Mini Kit following the manufacturer’s 

protocol, including the on-column DNase digestion. RNA quality and quantity were measured 

again following the cleanup protocol. 

Complementary DNA synthesis and RT2 Profiler PCR Mouse Arrays 

500 ng of total RNA was reverse transcribed using the First Strand cDNA Synthesis Kit 

(Qiagen) following the manufacturer’s protocol. PCR data were collected by the StepOne Software 

v2.3 (Thermo Fisher Scientific) and analyzed by Qiagen’s PCR Array Data Analysis Web Portal. 

Several methods to normalize gene expression changes were used, including the best fit from the 

panel of housekeeping genes and geometric mean from the full plate. Only gene expression changes 

that were statistically significant with all normalization protocols are presented in the Chapter 3. 

Western blotting 

Whole brain samples of Dhcr24+/+, Dhcr24–/– and Dhcr24+/- newborn mice were 

homogenized by sonication in ice-cold RIPA lysis buffer (VWR International) plus phosphatase 

inhibitors (Sigma-Aldrich) and protease inhibitors (Thermo Fisher Scientific) and incubated on ice 

for 30 min. To clear the lysates, the samples were spun at 14,000 X g at 4°C for 5 min to pellet the 

debris. The protein concentration of the supernatant was quantified by PierceTM BCA Assay 

(Thermo Fisher Scientific). Equal amounts of protein from each sample were mixed with reducing 

reagent and loading buffer and heated to 70°C for 10 min. Proteins were separated on NuPAGE™ 

4-12% Bis-Tris Protein Gels (Thermo Fisher Scientific). Pre-stained protein was used to evaluate 

the molecular weight. The Bio-Rad Mini Trans-Blot Electrophoretic Transfer Cell was used for the 

electrophoretic transfer using polyvinylidene difluoride membranes (Immobilon-P PVDF 
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Membrane, Sigma-Aldrich) and transfer buffer (25 mM Tris, 192 mM glycine and 20% (v/v) 

methanol (pH 8.3)). Following transfer, PVDF membranes were blocked in 5% milk in TBS (50 

mM Tris-Cl, 150 mM NaCl, pH 7.5) with 0.05% Igepal (Spectrum Chemical) and incubated in 

primary antibody overnight at +4°C and secondary antibodies at room temperature for 1 hour. 

Membranes were probed with the following primary antibodies: anti-DHCR24 (Cell Signaling), 

anti-beta-actin (Cell Signaling), anti-GAPDH (Cell Signaling) and anti-MAP2 (Cell Signaling). 

Western blots were developed using Azure’s Radiance Substrate, imaged on an Azure C300 with 

the cSeries Capture Software and saved as TIFF images (Azure Biosystems). The TIFF images 

were analyzed with AzureSpot and data graphed in GraphPad Prism 8 (GraphPad Software).  

Cell counting 

Cells were counted on an ImageXpress Pico Automated Cell Imaging System at 4X Fluotar 

objective in the DAPI channel. To stain the nucleus, 100 µL of a 1:2000 dilution of Hoechst dye 

(Thermo Fisher Scientific) in PBS was added to each well and incubated for 5 minutes before data 

acquisition. Cells were counted using the cell counting algorithm in CellReporterXpress. 

Sterol extraction for HPLC-MS/MS analysis 

Tissue 

Brains were homogenized in ice-cold 1X PBS using a Q55 sonicator (Qsonica). To a 5 µL 

aliquot of homogenate, Folch’s solution (600 µL; 2/1 chloroform/methanol), aqueous NaCl 

solution (0.9%, 300 µL) and 10 µL of an internal standard mix (30 µM D7-cholesterol, D7-7-DHC, 

D7-8-DHC, 13C3-desmosterol and 13C3-lanosterol) were added. The samples were then vortexed for 

1 min and centrifuged at 10,000 RCF for 10 min. The bottom organic phase was collected and dried 

in a Savant Integrated SpeedVac® System (Thermo Fisher Scientific) and then redissolved in 100 

µL of MeOH and transferred to a mass spec compatible plate pre-deposited with 200 µg 4-Phenyl-

1,2,4-triazoline-3,5-dione (PTAD) per well and sealed with Easy Pierce Heat Sealing Foil (Thermo 

Fisher Scientific). Values were normalized to total protein as quantified by Pierce™ BCA assay 
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(Thermo Fisher Scientific) reading absorbance at 562 nm using a Spectromax Plus 384 (Molecular 

Devices) and reported as nmol/mg protein. 

Serum 

To a 10 µL aliquot of human serum, Folch’s solution (600 µL; 2/1 chloroform/methanol), 

aqueous NaCl solution (0.9%, 300 µL) and 10 µL of an internal standard mix (30 µM D7-

cholesterol, D7-7-DHC, D7-8-DHC, 13C3-desmosterol and 13C3-lanosterol) were added. The samples 

were then processed as the tissue samples described above. Values were normalized to volume and 

reported as ng/µL serum. 

Cell cultures 

Sterol levels were analyzed in individual wells and, for most experiments, cellular levels 

correspond to 8-12 technical replicates. After removing the medium, 200 μL of MeOH containing 

internal standard (30 µM D7-cholesterol, D7-7-DHC, D7-8-DHC, 13C3-desmosterol and 13C3-

lanosterol) were added. The 96-well plates were placed on an orbital shaker for 30 min at room 

temperature. An aliquot (100 µL) of the supernatant was transferred to a PTAD-predeposited plate, 

sealed with Easy Pierce Heat Sealing Foil followed by 30 min agitation at room temperature and 

analyzed by LC-MS/MS. Values were normalized by cell count per well and reported as 

nmol/million cells.  

HPLC-MS/MS (SRM) analyses of sterols 

The samples were placed on an Acquity UPLC system coupled to a Thermo Scientific TSQ 

Quantis mass spectrometer equipped with an APCI source. Then 5 μL was injected onto the column 

(Acquity BEH C18 1.7 μm, 2.1 mm × 50 mm ) with 100% MeOH (0.1% v/v acetic acid) mobile 

phase for 1.0 min runtime at a flow rate of 500 μL/min. Natural sterols were analyzed by selective 

reaction monitoring (SRM) using the following m/z transitions: cholesterol 369 → 369, 7-DHC 560 

→ 365, 8-DHC 558 → 363, desmosterol 592 → 560, lanosterol 634 → 602, with retention times 

of 0.7, 0.4, 0.4, 0.3 and 0.3 min, respectively. SRMs for the internal standards were set to: d7-Chol 
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376 → 376, d7-7-DHC 567 → 372, d7-8-DHC 565 → 370, 13C-desmosterol 595 → 563, 13C-

lanosterol 637 → 605.  

Sterol extraction for GC-MS analysis of sterols 

Serum 

To a 10 µL aliquot of human serum, Folch’s solution (600 µL; 2/1 chloroform/methanol), 

aqueous NaCl solution (0.9%, 300 µL) and 10 µL of an internal standard mix (30 µM D7-

cholesterol, D7-7-DHC, D7-8-DHC) were added. The samples were then vortexed for 1 min and 

centrifuged at 10,000 RCF for 10 min. The bottom organic phase was collected in a glass 

autosampler vial and dried in a Savant Integrated SpeedVac® System (Thermo Fisher Scientific). 

Dried lipid samples were derivatized with 35 µL N,O-bis(trimethylsilyl)trifluoroacetamide 

(BSTFA) and transferred to a glass autosampler vial insert for analysis. Values were normalized 

by volume of serum and reported as ng/µL of serum. 

Cell cultures 

Single wells were extracted with 200 μL of MeOH containing an internal standard cocktail 

(30 µM D7-cholesterol, D7-7-DHC, D7-8-DHC). An aliquot (190 µL) of the supernatant was 

transferred to glass autosampler vial. Three adjacent wells were combined in each vial before 

drying. Samples were dried in a SpeedVac concentrator. Dried lipid samples were derivatized with 

BSTFA and transferred to a glass autosampler vial insert for analysis. Values were normalized by 

average cell count and reported as fold change over control (DMSO for amiodarone, non-silencing 

shRNA for Ebp-deficient Neuro2a). 

GC-MS analysis of sterols 

5 μL of BSTFA-derivatized lipid sample was injected onto the column (SPB-5, 0.25 μm, 

0.32 mm × 30 m) with the following temperature program: 180°C was held for 1 min; then 

increased to 250 °C at 20°C/min; then raised to 300°C at 4°C/min and kept for 7 min. Selected 

sterol intermediates were analyzed by extracted ion chromatogram (EIC) using the following 
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values: cholesterol (m/z 458, retention time 16.9 min), zymostenol (m/z 458, retention time 17.1 

min), zymosterol (m/z 456, retention time 17.4 min) and D7-Chol (m/z 465, retention time 16.9 

min). Final sterol numbers were calculated using D7-Chol as the internal standard. Response factors 

were calculated for each sterol and used to calculate the total amount. 

Serum drug extraction 

To 75 µL of human serum were added 188 µL H2O, 10 µL internal standard (d8-

aripiprazole) and 75 µL of 4.5 M ammonium hydroxide. The samples were then vortexed 

vigorously for 1 minute. Following vortexing, 950 µL of methyl tert-butyl ether (MTBE) was added 

to each sample followed by another minute of vortexing. Samples were then centrifuged at 10,000 

RCF for 10 minutes. The top organic layer was collected to a glass autosampler vial and dried in a 

SpeedVac. After samples were dried 150 µL of MeOH/NH3•H2O (95:5, v/v) was added to each 

vial, briefly vortexed and then transferred to a chromatography vial insert for LC-MS/MS analysis. 

Serum drug measurements  

Amiodarone and MDEA levels were acquired on an Acquity UPLC system coupled to a 

Thermo Scientific TSQ Quantis mass spectrometer using an ESI source in the positive ion mode. 

5 μL of each sample was injected onto the column (Phenomenex Luna Omega C18, 1.6 μm, 100 

Å, 2.1 mm × 50 mm) using water (0.1% v/v acetic acid) (solvent A) and acetonitrile (0.1% v/v 

acetic acid) (solvent B) as mobile phase. The gradient was: 10% to 40% B for 0.5 min; 40% to 

95% B for 0.4 min; 95% B for 1.5 min; 95% to 10% B for 0.1 min; 10% B for 0.5 min. 

Amiodarone and MDEA levels were analyzed by selective reaction monitoring (SRM) using the 

following m/z transitions: amiodarone 646 → 86, and MDEA 618 → 72. The SRM for the internal 

standard (d8-aripiprazole) was set to 456 → 293 and response factors were determined to accurately 

determine the drug levels. Final drug levels are reported as ng/mL of serum. 

Statistical analyses 

Data are presented as the mean ± standard error of the mean. Unpaired two-tailed t-tests 

were performed for individual comparisons between two groups, employing Welch’s correction 
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when the variances between the two groups were significantly different. A one-way ANOVA with 

multiple comparisons and Tukey corrections were performed for comparisons between three or 

more groups. The P values for statistically significant differences are highlighted in Figure 

Legends. Statistical analyses were performed using GraphPad Prism version 8 (GraphPad 

Software) for Windows and Microsoft Excel 2016. 
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CHAPTER 3:  RESULTS 

Cholesterol, desmosterol and 7-DHC levels show a developmental trajectory  

Cholesterol is the major sterol in brain tissue and starts accumulating early in embryonic 

development. However, the temporal production of cholesterol and its two immediate precursors 

(desmosterol and 7-DHC) in the brain is not well understood to date. To gain insight into this 

process, we compared the levels of cholesterol and its immediate precursors starting from 

embryonic stages (E9) to adulthood (P240) in the brain (Figure 3).  

We found that compared to cholesterol, the absolute levels of its precursors were 

significantly lower at all stages of development: cholesterol was an order of magnitude more 

abundant than desmosterol, while desmosterol was an order of magnitude higher than 7-DHC. 

Cholesterol, desmosterol and 7-DHC each had a distinct developmental trajectory. The most 

significant increase in cholesterol levels was observed from E17 to P30, with levels plateauing 

thereafter. Desmosterol levels increased linearly from E9 through P0 and after P30 stayed at low 

levels. In contrast, 7-DHC was present at very low levels in the mouse brains, peaking at P7 and 

declining thereafter.  
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Figure 3: Ontogeny of cholesterol, desmosterol and 7-DHC in the mouse brain from E9 to P240. 

Note the different y-axis for all three sterols. Embryonic stages E13-15 and E16-18 were combined and 

labeled E14 and E17 respectively. n values for each time point: E9 = 3; E14 = 13; E17 = 8; P0 = 23; P30 

= 3; P60 = 3; P150 = 3 and P240 = 2. 
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Cholesterol deficiency leads to early postnatal death 

Desmosterolosis is an autosomal recessive disorder with Mendelian inheritance, thus the 

expected frequency of knockouts is approximately 25%. In our mouse colony we found a slightly 

lower than expected number of Dhcr24-KO mice (Figure 4A): in 12 litters with total 96 embryos 

(average number of embryos per litter = 8) we obtained 21% of KOs. At P0, Dhcr24-KO pups 

could be visually identified by lack of wrinkled skin, shorter limbs and a missing a milk spot 

(Figure 4B). Western blot 

analyses of P0 brains revealed 

DHCR24 protein was 

completely absent in Dhcr24-

KO pups, while Dhcr24-Het 

mice  brains revealed a 50% 

reduction of DHCR24 when 

compared to WT littermates 

(Figure 4C). At P0, in 

addition to commonly 

observed KO stillborn pups (9 

stillborn out of 27 born), all 

live-born KO pups died 

shortly after birth. 

Furthermore, KO pups 

weighed approximately 10% 

less than WT littermates (P < 

0.0001), while WT and 

Dhcr24-Het P0 weights were 

comparable (Figure 4D).  

 
Figure 4: Knockout of Dhcr24 affects viability and birth weight of 

mice. A) Number of embryos by genotype, E9-E18, recovered from 12 

litters. B) An example of a litter with 3 KO pups (indicated by stars). 

The KO pups lack milk spots, have shorter legs and necks and wrinkle-

free skin. C) DHCR24 protein expression is absent in Dhcr24-KO 

brains and is greatly decreased in Dhcr24-Het brains. D) Number of P0 

pups obtained from 12 litters that contained pups of all three genotypes. 

P0 KO pups are significantly lighter than their WT or Het littermates. 

**** P < 0.0001.  
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Desmosterol is greatly elevated in the brains of Dhcr24-deficient mice  

Next, we compared cholesterol, desmosterol and 7-DHC levels in brains of WT, Het and 

Dhcr24-KO littermates during embryonic development and shortly after birth (Figure 5). While 

there was a steady increase of cholesterol and desmosterol in the WT and Het brains during 

embryonic stages, no accumulation of cholesterol in Dhcr24-KOs could be observed. Instead, 

desmosterol steadily accumulated in embryonic KO brains, reaching comparable levels to that of 

cholesterol seen in the WT brains by P0. Interestingly, the difference among WT, Het and Dhcr24-

KO sterol levels was already present at E14, with the most pronounced differences at P0. Our results 

also confirmed previously reported data that endogenous brain cholesterol synthesis in the 

developing brain starts around E12 [88, 89].  

Desmosterol is elevated in Dhcr24-Het mice compared to WT littermates  

Since we found that desmosterol is significantly elevated in P0 brain of Dhcr24-Het mice, 

we hypothesized that in these mice i) elevated desmosterol levels will persist into adulthood, and 

ii) maternal Het genotype will by itself have an effect on the developing pups. The effect of the 

maternal genotype on the pup’s brain sterol levels is shown in Figure 6. We found decreased 
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Het 9 15 8 26
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Figure 5: Desmosterol is greatly elevated in the brains of Dhcr24-deficient mice. A) Comparison of 

cholesterol, desmosterol and 7-DHC levels in mouse brains during development. WT are shown in gray, 

Het in blue and KO in red. B) Statistical significance values for (A). C) n values for all groups in (A). *P 

< 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. 
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cholesterol (P < 0.001) and increased desmosterol (P < 0.01) levels in the brain tissue of Dhcr24-

Het pups, which was independent of the maternal genotype (e.g. Dhcr24-Het pups originating from 

Dhcr24-Het vs WT mothers). In addition, we observed that 7-DHC levels were elevated in Het 

pups compared to their WT littermates in litters from Het mothers only (P  = 0.0280). However, at 

present, the biological significance of such a small elevation in 7-DHC is unclear. 

Next, desmosterol, 7-DHC and cholesterol levels were compared across different brain 

regions and the whole brain of two-month-old WT and Dhcr24-Het mice. While there was a 

significant difference in cholesterol levels between WT and Het brains at P0, no difference was 

detected at P60 across the analyzed brain regions, except in the striatum, which showed elevated 

cholesterol levels (Figure 7A). In contrast, desmosterol levels remained greatly elevated at P60 in 

all brain regions, with the most pronounced increase in the striatum (Figure 7A). Surprisingly, the 

largest difference in 7-DHC levels was observed at P60, with the most pronounced changes in the 

striatum. In addition to brain tissue, several other tissues were analyzed at P60. These include spinal 

cord, sciatic and optic nerve (Figure 7B) as well as liver (Figure 7C) and serum (Figure 7D). 

Compared to the brain, the serum had the lowest levels of sterols, while the spinal cord, sciatic and 
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Figure 6: Cholesterol and desmosterol levels are not affected by maternal genotype. Sterols were 

analyzed in the brains from WT and Dhcr24-Het pups derived from either WT or Dhcr24-Het mothers at 

P0. The maternal genotype did not have an effect on the cholesterol and desmosterol levels in the brain of 

newborn pups. n for maternal WT genotype:  16 WT pups and 14 Het pups; n for Het maternal genotype:  

8 WT pups and 18 Het pups. *P < 0.05; ***P < 0.001; ****P < 0.0001. 
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optic nerves had a larger amount of sterols. It should be noted that all nervous tissue had much 

higher levels of the three sterols than the liver or serum in both WT and Het mice. 

Elevated desmosterol levels result in complex transcriptional changes 

Since sterols are potent regulators of gene expression [90, 91], we screened P0 brain tissue 

using specific PCR arrays (Qiagen) to determine if elevated desmosterol changes gene expression. 

The pathway-focused panels used in this study include lipoprotein signaling and cholesterol 

metabolism, nuclear receptors and coregulators and synaptic plasticity arrays. The screening of 

both Dhcr24-KO and Dhcr7-KO brain tissues was done to compare similarities and differences. 
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Figure 7: Desmosterol levels are greatly elevated in nervous tissue of Dhcr24-Het mice. Cholesterol, 

desmosterol and 7-DHC levels were measured in P60 WT and Dhcr24-Het mice. A) Dhcr24-Het brain 

regions have varying levels of sterols. B) Cholesterol, desmosterol and 7-DHC were measured in WT and 

Dhcr24-Het mice and their levels compared in whole brain, spinal cord, sciatic nerve and optic nerve. C) 

Cholesterol, desmosterol and 7-DHC in liver. While Dhcr24-Het liver has increased desmosterol level, it 

does not reach statistical significance (P = 0.0549). D) Sterol levels in serum of Dhcr24-Het mice are not 

statistically different from WT livers. n = 4 per group, 2 males and 2 females for each genotype. No sex 

differences were observed, so males and females of the same genotype were grouped and analyzed 

together. *P < 0.05; ** P < 0.01; ***P < 0.001; ****P < 0.0001. 
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The full list of differentially regulated transcripts and their function is shown in Table 1. Six lipid 

transcripts were downregulated and four were upregulated in Dhcr24-KO brain. Among the lipid 

transcripts, Dhcr24 was undetectable in Dhcr24-KO brains, and Dhcr7 transcript was undetectable 

in Dhcr7-KO brains. Among lipid transcripts with altered expression in Dhcr24-KO brains, three 

were also changed in the brains of Dhcr7-KO mice, albeit in the opposing direction. These three 

included Srebf1, a transcription factor and two sterol transporters, Abca1 and Abcg1. These findings 

are in agreement with elegant studies by Yang et al [92] showing that desmosterol regulates 

expression of Abca1 through the activation of LXRs. 

Among transcripts encoding nuclear receptors and co-regulators we identified eight 

transcripts with downregulated expression in Dhcr24-KO mice and two transcripts altered in 

Dhcr7-KO brains (one downregulated and one upregulated). Common between the two disorders 

was downregulation of Nr2f2, a transcription factor. While all nuclear receptors were 

downregulated in Dhcr24-KO brain, synaptic plasticity transcripts were all upregulated. Of these 

four upregulated genes for synaptic plasticity, one encodes a neural cell adhesion molecule, while 

the remaining three are transcription factors with expression patterns ranging from ubiquitous to 

highly region-specific expression in the brain. To determine if there is a common dysregulated 

pathway and visualize the interaction among various transcripts, all genes with altered expression 

were uploaded into the STRING database (https://string-db.org/). The visualization of interactions 

is shown in Figure 8. This expanded network analysis revealed that these genes had common 

interaction partners, suggesting that Dhcr24- and Dhcr7-deficiency might affect the same nuclear 

transcriptional network.  

  

https://string-db.org/
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High desmosterol levels alter neuronal outgrowth  

Synaptic development is a cholesterol-dependent process and altered sterol composition of 

neuronal membranes affects neuronal arborization. For example, in a SLOS mouse model, elevated 

7-DHC increases dendritic and axonal length of hippocampal neurons [93] and 7-DHC derived 

oxysterols greatly increase neuronal arborization [94]. To test if elevated desmosterol has an effect 

on neuronal morphology, we prepared cortical neuronal cultures from embryonic day 15 (E15) 

Dhcr24-KO and WT brains. Neurons were cultured for up to six days and their morphology was 

Table 1: Elevated desmosterol changes lipoprotein signaling, cholesterol biosynthesis transcripts, 

synaptic plasticity transcripts, nuclear receptors and coregulators. The table shows the gene symbol, 

gene name and biological function along with fold regulation and P values. The upregulated transcripts 

are shown in blue while downregulated transcripts are shown in red. All statistically significant changes 

are shown in red, P < 0.05. 
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analyzed using the neuron-specific marker microtubule associated protein 2 (MAP2). Imaging and 

quantification of total neuronal outgrowth revealed that arborization of Dhcr24-KO neurons was 

significantly increased compared to the neuronal outgrowth seen in samples originating from WT 

brains (P < 0.0001) (Figure 9A). To corroborate these results, protein was extracted from E18 and 

P0 brains, followed by western blotting for MAP2 (Figure 9B-D). This experiment revealed that 

MAP2 was also greatly elevated in Dhcr24-KO brains at both E18 and P0, confirming the initially 

observed in vitro data.  

 

Figure 8: Interaction network of altered transcripts from PCR arrays. A) Transcripts altered in 

Dhcr24-deficient mice. B) Transcripts altered in Dhcr7-deficient mice. The STRING database of known 

and predicted biological interactions was used to analyze altered transcripts. Network statistics can be 

found in Appendix C. 
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Amiodarone affects post-lanosterol cholesterol biosynthesis in neuronal and glial 

cells 

Amiodarone crosses the blood brain barrier and long-term use leads to an increased 

incidence in neurological symptoms including tremors, gait ataxia, peripheral neuropathy and 

cognitive impairment. Although the mechanism of action in the nervous system is currently 

unknown, several reports implicate altered cholesterol biosynthesis [73, 74, 85]. Figure 1B shows 

a schematic of post-lanosterol cholesterol biosynthesis including intermediates that were measured 
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Figure 9: MAP2 expression is elevated in Dhcr24-KO brain. A) Total neuronal outgrowth was 

compared in WT and KO cultures from E15 cortical neurons. Neuronal cultures in 96-well plates were 

stained with MAP2. The total outgrowth was assessed with the ImageXpress Pico Automated Cell Imaging 

System using CellReporterXpress software (Molecular Devices, San Jose, CA, USA) and the Neurite 

Tracing analysis protocol. Total outgrowth, in µm was normalized to total number of cells. Neuronal 

cultures were prepared from 2 WT embryos and 4 KO embryos. For each culture condition, 8 wells with 

49 images per well were analyzed at 20X. B) Western blots for MAP2 in whole brain extracts from WT 

and Dhcr24-KO pups at P0 and E18, normalized to β-actin and GAPDH, respectively. C,D) Quantification 

of band intensities was performed with Azure’s AzureSpot software and graphed in GraphPad Prism 8. * 

P < 0.05; **** P < 0.0001. 
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in the present study. To assess the effects of amiodarone on post-lanosterol synthesis we treated 

primary cortical neurons and astrocytes with increasing concentrations of amiodarone and analyzed 

levels of sterol intermediates by LC-MS/MS and GC-MS. While cell viability was not affected over 

the range of concentrations used, several sterol intermediates were affected by the treatment. 

Notably cholesterol content was slightly decreased, with a more pronounced effect in neurons 

(Figure 10B) while zymostenol and zymosterol levels are drastically increased compared to DMSO 

treatment with the magnitude of increase being much larger in astrocytes (Figure 10A). The 

increase in zymostenol and zymosterol suggests that amiodarone inhibits Ebp, the enzyme 

responsible for the conversion of zymosterol to 24-dehyrodlathosterol or zymostenol to lathosterol 

(Figure 1). 

Amiodarone inhibits the sterol biosynthetic enzyme EBP 

To confirm that amiodarone treatment produces a similar sterol profile when compared to 

EBP inhibition we generated an Ebp-knockdown Neuro2a cell line utilizing shRNA specific to 

EBP. These mouse neuroblastoma cells have been used extensively in cholesterol biosynthesis 

studies [66-68, 90, 95]. In fact, Dhcr7-deficient Neuro2a cells were key in elucidating the molecular 

defects associated with faulty cholesterol synthesis [90, 96]. Using the same methods as previously 

mentioned to measure sterol intermediate levels, we compared Ebp-deficient Neuro2a cells with 

amiodarone treated Neuro2a cells (Figure 11). While cholesterol levels are modulated in opposite 

directions with the two conditions, zymosterol and zymostenol show the same alteration. Note that 

while the magnitude of increase in zymosterol for both genetic and chemical inhibition are similar, 

the magnitude of change for zymostenol is much greater.   
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Figure 10: Amiodarone elevates zymosterol and zymostenol in cells. Cholesterol, zymostenol and 

zymosterol levels were measured by GC-MS in mouse astrocytes (A) and E15 cortical neurons (B). 

Amiodarone has a dose-dependent effect on both zymosterol and zymostenol in both astrocytes and 

neurons, with astrocytes being more sensitive to the treatment. **P < 0.01; *** P < 0.001; ****P < 

0.0001. 
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Figure 11: Comparison of genetic and chemical inhibition of EBP. Cholesterol, zymostenol and 

zymosterol levels were measured by GC-MS in Ebp-deficient Neuro2a cultured in defined media for 3 

days (A) and Neuro2a treated with 1 µM amiodarone for 3 days (B). *P < 0.05; **P < 0.01; ***P < 0.001. 
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Amiodarone users have elevated serum levels of desmosterol, 8-DHC, zymosterol 

and zymostenol 

Based on the findings from our cell culture experiments we wanted to determine if the 

changes in cholesterol biosynthesis were reflected in the serum of human patients taking the 

medication. Through the Nebraska Biobank we obtained de-identified serum samples from patients 

with amiodarone in their medical records as well as age- and sex-matched samples from control 

individuals. Of the 60 samples with amiodarone listed in the medical records we identified 14 

samples that contained amiodarone and MDEA in measurable quantities via LC-MS/MS (Figure 

12A-C). Of these 14 samples, 9 were given amiodarone orally (Figure 12D, E, gray boxes) while 

the remaining 5 received intravenous amiodarone (Figure 12D, E, red boxes). The samples that 

came from patients receiving amiodarone orally had higher levels of amiodarone and MDEA in 

their plasma on average. 

We then analyzed cholesterol, desmosterol and 8-DHC content of the serum by LC-MS/MS 

and zymosterol and zymostenol content of the serum by GC-MS of the 14 amiodarone samples 

along with the matched controls (Figure 13). As previously reported, desmosterol was significantly 

increased in the amiodarone samples. Zymostenol showed a trend towards elevation in response to 

treatment. Zymosterol was also increased in the treated samples, although it was only detectable in 

6 of 9 oral amiodarone samples and 1 out of 5 intravenous amiodarone samples. Interestingly, 8-

DHC levels were also increased with amiodarone use, a finding that is consistent with the inhibition 

of EBP.  
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Figure 12: Amiodarone and MDEA are present in patient serum. Typical chromatograms and 

structures for amiodarone (A), MDEA (B) and the internal standard d8-Aripiprazole (C). Amiodarone and 

MDEA were present in measurable quantities in 14 samples (D and E) that had amiodarone listed in their 

medical records. Red boxes indicate intravenous amiodarone administration while gray boxes indicate 

oral administration. 
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Figure 13: Sterol measurements in human serum samples. Serum samples that were confirmed to 

contain amiodarone and/or MDEA were analyzed by LC-MS/MS for cholesterol (A) and desmosterol (B) 

content as well as GC-MS for zymostenol (C), zymosterol (D) and 8-DHC (E) content along with age- and 

sex-matched control samples. Red boxes represent intravenous administration of amiodarone while gray 

boxes indicate oral administration of amiodarone. Zymosterol levels were below the limit of detection for 

all control samples and 7 out of 14 amiodarone samples. *P < 0.05; **P < 0.01. 
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CHAPTER 4:  DISCUSSION 

Role of desmosterol in neuronal development 

The outcome of our studies can be summarized as follows: A) cholesterol deficiency leads 

to early postnatal death or stillborn pups. B) Desmosterol is the second most abundant sterol at P0 

during normal development, with a declining trajectory during development in to adulthood. C) In 

Dhcr24-KO mice, while desmosterol and 7-DHC are significantly elevated, cholesterol is greatly 

decreased. D) Greatly elevated desmosterol in Het brain at P0 continues to stay elevated in the adult 

brain. E) Changes in brain sterol composition lead to altered transcriptome response, affecting 

synaptic, lipid and nuclear receptor transcripts in a complex fashion. F) Total arborization of 

cultured Dhcr24-KO neurons is increased compared to WT neurons.  

Studies in the SLOS mouse models were informative and provided a new insight into the 

human disorder [97-100], as the sterol biosynthesis pathway is conserved across the two species. 

SLOS is the most frequent human disorder caused by mutation in cholesterol biosynthesis enzymes, 

and SLOS transgenic mouse models recapitulate molecular and biochemical changes seen in SLOS 

patients [17, 42, 72, 101, 102]. Similarly, DHCR24 mutations in desmosterolosis patients share the 

same fundamental phenotype with the Dhcr24-KO mice – they have highly elevated desmosterol, 

and diminished levels of cholesterol. Thus, the highly conserved cholesterol biosynthesis pathways, 

and similarity of biochemical profile between human patients and transgenic mouse models suggest 

that the current model is a clinically relevant representation of pathophysiological processes that 

take place in the brain of human desmosterolosis patients.  

While whole body cholesterol biosynthesis and metabolism have been extensively studied 

in the context of energy metabolism and cardiovascular diseases, the origin, role, metabolism and 

regulation of the CNS cholesterol pool remains understudied. As shown in this study, desmosterol 

is the second most abundant sterol in the brain with rapidly increasing levels prenatally, and steady 

levels in adulthood. Thus, this raises the interesting question: does desmosterol have a function of 
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its own, and can it influence normal brain function? Jansen et al. proposed that transient 

accumulation of desmosterol during early postnatal period may serve to increase the sterol pool in 

the brain [103]. This could be accomplished through different mechanisms due to the distinct 

chemical properties of desmosterol. Desmosterol has decreased propensity to be esterified as 

compared to cholesterol. Additionally, it cannot be hydroxylated to generate 24S-

hydroxycholesterol and it is capable of activating the LXR-dependent pathway [103]. Based on the 

effects of desmosterol on neuronal arborization and synaptic plasticity transcripts that we have 

observed, it is conceivable that desmosterol may have additional roles in the regulation of neuronal 

differentiation and synaptic remodeling and this should be further investigated. 

Our studies and previous findings raise an interesting question. In recessive diseases, 

heterozygous parents are typically asymptomatic, with the disease phenotype being expressed only 

in the offspring homozygous or compound heterozygous for the mutations. This might not be true 

in the case of DHCR24 mutations. Namely, in the three clinical reports of desmosterolosis [20, 22, 

26] in addition to description of affected individual, the authors assessed desmosterol levels in 

parents (carriers of DHCR24 mutations). All six carriers had elevated plasma desmosterol levels 

compared to control samples. In addition, the cultured immortalized lymphocytes obtained from 

patient parents showed a 10-fold increase in desmosterol levels compared to control samples. This 

finding has potential clinical implications, raising a host of questions. At what level do sterol 

intermediates levels become detrimental? How wide is the “normal” range for cholesterol 

biosynthesis intermediates? Is the elevated level of desmosterol predisposing, protective or a 

modifying factor for another condition?   

An interesting and important observation of our study is related to the significantly 

increased desmosterol levels of the Dhcr24-Het mice throughout their lifespan. With decreased 

DHCR24 activity observed in the Dhcr24-Het mice, we speculate that 7-dehydrodesmosterol (7-

DHD), the immediate precursor to desmosterol, would also be increased in the brain. This would 
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not be surprising and can be extrapolated from the increased 7-DHC levels in the Dhcr24-Het brains 

at P0 (Figure 5). The increase in 7-DHC suggests that intermediates upstream to desmosterol on 

the pathway would also be affected. Since both 7-DHC and 7-DHD are more prone to oxidation 

due to their chemical structure [104, 105], the resulting oxidative products may have cytotoxic 

effects in the brain. Thus, in the DHCR24+/- heterozygous human population the elevated 

desmosterol and 7-DHD levels have the potential to result in elevated levels of oxysterols and 

increased oxidative stress, which might have a long-term effect on overall health status. These 

potential oxidative stress effects are likely to be regional and tissue-dependent, as we observed 

differences in desmosterol accumulation between the various brain regions. Thus, we propose that 

health status of the human heterozygous DHCR24+/- carriers should be carefully assessed, as this 

single-copy mutation might affect more than one domain of health and lead to a predisposition to 

various disorders in which oxidative stress plays a pathophysiological part.  

While desmosterol is greatly elevated in Dhcr24-KO and significantly decreased in Dhcr7-

KO mice as compared to WT, 7-DHC was increased in both of these two mouse models, and both 

disorders are characterized by markedly decreased cholesterol levels in the brain. Thus, it is perhaps 

not surprising that the molecular and microanatomical changes also show some similarities between 

Dhcr24-KO and Dhcr7-KO mice. Namely, the affected gene expression, while not identical across 

the two mouse models, impact the same transcriptional networks, and increased neuronal 

arborization is a feature of both models. Untangling the precise origin of all these changes is 

challenging and we propose that the primary driver of the majority of common changes is lack of 

cholesterol, while the Dhcr24-KO specific changes are due to elevated desmosterol levels. 

However, we acknowledge that increased neural arborization can be potentially a result of 

increased 7-DHC observed in both models, and might be due to the previously reported toxic effect 

of 7-DHC derived oxysterols [91, 96]. 
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In conclusion, desmosterol is an abundant, temporally regulated precursor of cholesterol in 

brain cells, with putative physiological function. Its disturbances might be a significant contributor 

to disease states, and this should be further investigated.  

Amiodarone affects cholesterol biosynthesis  

Our results can be summarized as follows:  (A) Amiodarone inhibits Ebp in astrocytes and 

neurons leading to dose-dependent increases in zymosterol and zymostenol. (B) Genetic inhibition 

and chemical inhibition of Ebp yield similar results in Neuro2a cells. (C) Amiodarone and MDEA 

are present in measurable quantities in patient serum samples. (D) Patient samples with detectable 

levels of amiodarone or MDEA have elevated levels of desmosterol, 8-DHC and zymosterol as 

well as a slight increase in zymostenol.  

The biochemical findings from cell culture systems and patient serum implicate two 

enzymes that are subject to inhibition by amiodarone:  Dhcr24 and Ebp. The strongest effect in 

neuronal cells is the inhibition of Ebp. Ebp is responsible for the conversion of zymosterol to 24-

dehyrodlathosterol and zymostenol to lathosterol, as well as the isomerization of 7-DHC to 8-DHC, 

thus explaining the elevation of zymostenol and zymosterol in the neuronal and astrocytic cultures 

in response to amiodarone treatment. The elegant studies by Moebius and colleagues [106-109] 

analyzed the pharmacological properties of EBP. In their work they found that, in vitro, EBP can 

bind structurally diverse drugs with high affinity, including amiodarone. 

Interestingly, the increase in zymostenol due to amiodarone treatment in astrocytes is 

roughly 5 times higher than in neurons. Additionally, the magnitude of change in zymosterol is 

about twice as large in astrocytes as well, which may indicate that they are more susceptible to 

chemical alterations in cholesterol biosynthesis. Overall the profile in astrocytes and neurons was 

very similar to what was observed in Ebp-deficient cells.  

Amiodarone measurements in the clinical population are in agreement with the study in 

cell culture system, suggesting an effect on more than one enzyme. An interesting trend appeared 
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in the desmosterol, zymostenol and zymosterol results when the administration method was taken 

in to consideration. Intravenous administration (Figure 13, red boxes) tended to cluster with lower 

levels of the intermediates while oral administration in the form of a tablet (Figure 13, gray boxes) 

clustered at the higher end of the mentioned sterols. Interestingly, only 1 of the 5 samples with 

intravenous administration had detectable levels of zymosterol whereas it was detectable in 6 of 9 

samples that received oral administration. In fact, when comparing only samples that had a history 

of oral amiodarone usage, the elevation in zymostenol becomes statistically significant, as well 

increasing the mean desmosterol levels (Figure 14). It is important to take into consideration that 

amiodarone treatment can range from weeks to years [84]. Unfortunately, the length of treatment 

was not available for these samples, but intravenous administration is primarily used for short-term 

management of serious arrhythmias so it follows that those samples would have lesser effects 

reflected in their serum sterol levels. Thus, the alteration in sterol levels is apparently time-

dependent which is consistent with the major risk factor for developing toxic neurological effects 

being treatment duration. 

Amiodarone has a very narrow therapeutic range (1.0-2.5 µg/mL) [110] and the toxicity is 

linked to concentrations above 2.5 µg/mL [111]. However, the highest level of amiodarone in the 

patient samples we analyzed was 0.176 µg/mL, while the remainder of the samples had a range of 

0.0013 – 0.0184 µg/mL (median 0.0061 µg/mL) (Figure 12). Despite the samples analyzed in the 

present study being much below the reported therapeutic range, let alone near the toxicity threshold, 

observable changes in cholesterol intermediates are still present and significant. These changes 

would be much more pronounced in amiodarone users with high plasma concentration of 

amiodarone. Furthermore, due to the lipophilic nature of amiodarone and MDEA it is likely that 

the tissue specific concentrations of these drugs is even higher than what is observed in the serum 

and thus the effects on cholesterol biosynthesis may be even more pronounced in tissue due to the 

local concentration of the drug. 
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Figure 14: Sterol measurements in human serum samples that received oral administration of 

amiodarone. Serum samples that were confirmed to contain amiodarone and/or MDEA were analyzed by 

LC-MS/MS for cholesterol (A) and desmosterol (B) content as well as GC-MS for zymostenol (C), 

zymosterol (D) and 8-DHC (E) content along with age- and sex-matched control samples. Zymosterol levels 

were below the limit of detection for all control samples and 3 out of 9 amiodarone samples receiving oral 

amiodarone. *P < 0.05; **P < 0.01. 
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While amiodarone has been beneficial in the treatment of life-threatening arrhythmias, it 

has many side effects. At the cellular/molecular levels, since amiodarone is lipophilic, it easily 

accumulates in cells where it can cause mitochondrial damage and structural and functional 

disturbances in the late endosomes and lysosomes. This may lead to a so-called ‘lipid traffic jam’ 

and in the liver, amiodarone use can lead to nonalcoholic steatohepatitis. Desmosterol levels in the 

liver and serum correlate with the severity of steatosis and inflammation [112]. The number of 

amiodarone prescriptions in the USA for 2006-2016 was 37,806,878 with a yearly average of 

3,436,989 (median 3,404,961) [79]. Additionally, amiodarone is considered a category D drug by 

the FDA, meaning that there is positive evidence of human fetal risk and careful consideration is 

critical for the use of this drug during pregnancy. Therefore, careful clinical evaluation and 

monitoring of the adverse side effects is warranted in long-term amiodarone use.  

This study provides insight into the consequences of amiodarone’s inhibition of cholesterol 

synthesis and warrants careful monitoring of blood biochemistry in amiodarone users. It is 

imperative that this monitoring goes beyond the standard cholesterol measurements as cholesterol 

levels on their own may not indicate a problem as seen in Figure 13 and Figure 14, as there was 

no observable difference in cholesterol between the two groups but the levels of the intermediates 

differed greatly. Additionally, the screening of novel compounds with structures similar to 

amiodarone should include testing for the inhibition of the EBP and other sterol enzymes to avoid 

unintended interference with cholesterol biosynthesis.  

Numerous studies have attempted to determine if plasma lipid measurements or 

pharmaceutical manipulations affect cognitive functions and brain neurochemistry [113, 114]. 

While there is no definitive answer when analyzing cholesterol levels in human serum samples, 

based on our limited studies in transgenic mouse models of cholesterol disorders, it is clear that 

serum sterol levels reflect cholesterol biosynthesis in brain and other tissues (Figure 7). However, 

the magnitude of change is much more pronounced in tissues compared to serum and the brain has 
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much larger change than other organs. Similarly, the levels of intermediates are much more 

representative of the defect in cholesterol synthesis than the level of cholesterol due in part to the 

effect of diet on cholesterol levels.  

Conclusions 

The characterization of desmosterolosis revealed a number of commonalities with what 

has been previously observed in various SLOS models. These include a drastic reduction in the 

amount of cholesterol present in the brain, prenatal lethality in knockouts, a marked alteration in 

sterol intermediate levels which result in alterations in gene transcription (Table 1) as well as the 

phenotype of primary neurons. It is important to keep in mind that these intermediates have other 

biological roles in addition to simply being just stepping stones on the way to cholesterol. However, 

a buildup of 7-DHC and desmosterol are not equal – due to the highly reactive nature of 7-DHC 

and its propensity to form oxidized sterols, known as oxysterols, 7-DHC buildup is particularly 

problematic as it has been shown that high levels of oxysterols are toxic [91]. It is important to 

consider the role that a desmosterol precursor, 7-dehydrodesmosterol, has been calculated to be 

equally as prone to oxidation as 7-DHC [104], however due to the reactive nature and relative 

scarcity of this sterol in tissues it was not measured in the present study.  

In addition to genetic elevation of cholesterol intermediates there are significant number of 

medications that have elevation of cholesterol intermediates as a side effect. Previous screening 

studies estimate about 5% of compounds out of ~3,000 analyzed have unintended effects on 

cholesterol biosynthesis. It is obvious that more potent inhibitors of sterol enzymes are problematic, 

such was the case in the removal of triparanol from the market. Many of the side effects of 

triparanol that lead to its withdrawal from the market are analogous to what is observed in the side 

effects of amiodarone use. For example, triparanol induced cataracts whereas corneal microdeposits 

are observed in “virtually all patients who receive amiodarone for more than 6 months” [115]. 



www.manaraa.com

44 

 

The major focus in the present study was on the neurodevelopmental consequences of 

perturbed cholesterol biosynthesis. Altered levels of cholesterol and its replacement with 

intermediates has devastating effects on the development of the nervous system. Similarly the use 

of medications that disrupt cholesterol synthesis during pregnancy have significant negative effects 

on the developing fetus as seen in the case of amiodarone use during pregnancy [76] in addition to 

the well-described teratogenic effects of other cholesterol disrupting medications [63]. These 

disruptions are much more serious for developing neurons as their rate of cholesterol biosynthesis 

is much higher than that of mature neurons [9] so they will more quickly feel the effects of the 

disruption, which then translates to neurological and developmental issues in humans. 

Future studies should focus on further exploring the extent to which unintended 

perturbations of cholesterol biosynthesis may contribute to side effects of commonly prescribed 

medications. Utilizing different models to understand the implications of these disruptions is vital 

in understanding the biological consequences that arise from disrupting cholesterol biosynthesis. 

Despite the fact that desmosterolosis is an incredibly rare disease, studying the etiology and 

pathophysiology of the disease illustrates the role certain biomolecules have in normal 

development. Likewise, understanding how different medications interact with this pathway may 

be informed by studying genetic disorders in the pathway and how they manifest. Furthermore, in 

the age of personalized medicine, understanding the full array of effects of a given medication is 

especially important when certain medications can interact and have devastating outcomes with 

different genotypes. For example, approximately 1.5% of the population carries a mutation in the 

Dhcr7 gene that encodes 7-dehydrocholesterol reductase, the enzyme in which dysfunction leads 

to SLOS. These mutations have been shown to interact with either aripiprazole [70] or cariprazine 

[116], two commonly prescribed antipsychotics known to inhibit DHCR7, which can lead to 

devastating neurodevelopmental outcome in the event that a carrier of one of these mutations takes 

these drugs during pregnancy. Therefore, further study of disruptions in cholesterol biosynthesis 
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will not only help inform clinicians of potentially devastating side effects, but also expand on the 

current knowledge of a pathway that, while essential for life, is not fully understood.   
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APPENDIX A:  STEROL INFORMATION 

 
Table 2: Common names of sterols used with detailed information. 

 

APPENDIX B:  STEROL BIOSYNTHESIS DISORDERS 

 

Table 3: Comparison of cholesterol synthesis disorders. 

 
Nomenclature Committee of the International Union of Biochemistry and Molecular Biology 

(IUBMB) describes each type of characterized enzyme for which an EC (Enzyme Commission) 

number has been provided. 
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APPENDIX C:  NETWORK STATISTICS OF ALTERED 

TRANSCRIPTS FROM PCR ARRAYS 

 

Figure 15: Network statistics of altered transcripts from PCR arrays. A) Transcripts altered in 

Dhcr24-deficient mice. B) Transcripts altered in Dhcr7-deficient mice. The STRING database of 

known and predicted biological interactions was used to analyze altered transcripts. Network 

interactions are shown in Figure 8. 
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APPENDIX D:  ZYMOSTEROL AND ZYMOSTENOL GC-MS 

CHROMATOGRAMS AND MASS SPECTRA 
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Figure 16: GC-MS analysis of zymosterol. A) Chromatogram (top) and mass spectrum (bottom) for pure 

zymosterol purchased from Kerafast. B) Typical chromatogram and mass spectrum obtained from control 

treated astrocytes. C) Typical chromatogram and mass spectrum obtained from astrocytes treated with 1 µM 

amiodarone for 5 days. Note the increase in peak size in C as well as the increase in the m/z 456 ion upon 

treatment with amiodarone.  
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Figure 17: GC-MS analysis of zymostenol. A) Chromatogram (top) and mass spectrum (bottom) for pure 

zymostenol purchased from Kerafast. B) Typical chromatogram and mass spectrum obtained from control 

treated astrocytes. C) Typical chromatogram and mass spectrum obtained from astrocytes treated with 1 µM 

amiodarone for 5 days. Note the increase in peak size in C as well as the increase in the m/z 458 ion upon 

treatment with amiodarone. 
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APPENDIX E:  REAGENT TABLE 
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